Title: Systems of Linear Equations - Substitution Method
Class: Math 100 or Math 107
Author: Jason Miner
Instructions to tutor: Read instructions and follow all steps for each problem exactly as given.
Keywords/Tags: systems, systems of linear equations, substitution, consistent

Systems of Linear Equations - Substitution Method

Purpose:

This is intended to refresh your knowledge about solving systems of linear equations using the substitution method, where there is a single solution.

Recall that a system of equations consists of two or more equations each with two or more variables. A solution to a system in two variables is an ordered pair (x, y) that satisfies each equation in the system. For now, we will concentrate on systems of linear equations.

Substitution Method - Solve for one of the variables in one of the equations and substitute it into the other equation. After this is done, you will have a single equation with one variable - solve for it. Then back-substitute to find the other.

Example: Solve $\left\{\begin{aligned} x-3 y & =-2 \\ 5 x+3 y & =17\end{aligned}\right.$ using the substitution method.

Let's solve the first equation for x, since this requires the least work: $x=3 y-2$

We now substitute this for x in the second equation: $\begin{gathered}5 x+3 y=17 \\ \Rightarrow 5(3 y-2)+3 y=17\end{gathered}$

Notice that we now have a single equation with the variable y. Let's solve for y :

$$
\begin{aligned}
& 5(3 y-2)+3 y=17 \\
\Rightarrow & 15 y-10+3 y=17 \\
\Rightarrow & 18 y-10=17 \\
\Rightarrow & 18 y=27 \\
\Rightarrow & y=\frac{27}{18} \\
\Rightarrow & y=\frac{3}{2}
\end{aligned}
$$

Now we can go back to our first step and solve for x :

$$
\begin{aligned}
& x=3 y-2 \\
\Rightarrow & x=3\left(\frac{3}{2}\right)-2 \\
\Rightarrow & x=\frac{9}{2}-2 \\
\Rightarrow & x=\frac{5}{2}
\end{aligned}
$$

So our solution is the ordered pair $\left(\frac{3}{2}, \frac{5}{2}\right)$. (Note that this is where the two lines intersect.)

Example: Now it's your turn. Solve $\left\{\begin{array}{r}x+y=2 \\ 2 x-3 y=9\end{array}\right.$ using the substitution method.
Solve the first equation for y : $y=$ \qquad

Now substitute this for y in the second equation: \qquad
Notice that you now have a single equation with the variable x - solve for x :

$$
x=
$$

\qquad
(Did you get $x=3$? If not, go back and check your work.)
Now go back to your first step and solve for y :

$$
y=\ldots---------\quad-
$$

Did you get $(3,-1)$ for your solution? Good! Now try the next to on your own.

Example: Solve using the substitution method.
(a) $\left\{\begin{aligned} 4 x-y & =7 \\ -2 x+3 y & =9\end{aligned}\right.$
(b) $\left\{\begin{array}{l}6 x-2 y=-3 \\ 5 x+3 y=4\end{array}\right.$
(The answers are (3,5) for (a) and $\left(-\frac{1}{28}, \frac{39}{28}\right)$ for (b). If you did not get these, consult a tutor for help.)

