Properties of the Real Numbers

The following are the properties of addition and multiplication if x, y, and z are real numbers:

	Addition	Multiplication
Commutative	$x+y=y+x$	$x \cdot y=y \cdot x$
Associative	$(x+y)+z=x+(y+z)$	$(x \cdot y) \cdot z=x \cdot(y \cdot z)$
Identity	$x+0=x$	$x \cdot 1=x$
	There is a unique number $-x$ such that	If $x \neq 0$, there is a unique number $\frac{1}{x}$ such that
Inverse	$x+(-x)=0$	$x \cdot \frac{1}{x}=1$

Distributive	$x \cdot(y+z)=x \cdot y+x \cdot z$
Multiplication by zero	$x \cdot 0=0$

Commutative Property: When adding or multiplying two numbers, the order of the numbers can be reversed without changing the result.

Addition: $3+5=5+3$ now check! $3+5=\ldots$ and $5+3=$
Multiplication: $4 \cdot 7=7 \cdot 4$ now check! $4 \cdot 7=\ldots \quad$ and $7 \cdot 4=$
Associative: When adding or multiplying three or more numbers, the result does not change if the numbers are grouped differently.

Addition: $(1+2)+3=1+(2+3)$ now check!
$(1+2)+3=\left(__{\square}\right)+3=__{-}$and $1+(2+3)=1+\left(__{\square}\right)=$
Multiplication: $(1 \cdot 2) \cdot 3=1 \cdot(2 \cdot 3)$ now check!
$(1 \cdot 2) \cdot 3=\left(__{-}\right) \cdot 3=Z_{\text {_ }}$ and $1 \cdot(2 \cdot 3)=1 \cdot\left(__{工}\right)=$
Identity: Addition and multiplication each have an identity element. This is a special number that does not change the value of other numbers when combined. For addition this number is zero, and for multiplication the number is one.

Addition: $5+0=$
Multiplication: $5 \cdot 1=$ \qquad
Inverse: Addition and multiplication each have a unique inverse element for each real number (except zero for multiplication!) A number combined with its inverse gives the identity element.

Addition: $5+(-5)=$ \qquad
Multiplication: $5 \cdot \frac{1}{5}=$ \qquad
Distributive: We say that multiplication distributes over addition of real numbers.
$2 \cdot(1+3)=2 \cdot 1+2 \cdot 3$ now check! $2 \cdot(1+3)=2 \cdot(\ldots)=$ \qquad and $2 \cdot 1+2 \cdot 3=$ \qquad $+\ldots=$ \qquad Addition does not distribute over multiplication!

$$
2+(1 \cdot 3) \neq(2+1) \cdot(2+3) \text { because } 2+(1 \cdot 3)=6 \text { and }(2+1) \cdot(2+3)=15
$$

Multiplication by zero: Any real number multiplied by zero is equal to zero.

$$
5 \cdot 0=
$$

\qquad

