Title: Graphing Functions - Translations and Reflections
Class: Math 107 or Math 111
Author: Jason Miner
Instructions to tutor: Read instructions and follow all steps for each problem exactly as given.
Keywords/Tags: Graph, translation, reflection, shift

Graphing Functions - Translations and Reflections

Purpose:

This is intended to refresh your knowledge about graphing functions, including translations and reflections of graphs.

First we will take a look at the function $y=x^{2}$ and various horizontal and vertical shifts or translations.

Example: Complete the following tables of values and sketch the graph of each function. The graph of $y=x^{2}$ is shown for reference.
(a) $f(x)=x^{2}+2$

(b) $f(x)=x^{2}-2$

x	$f(x)$	$\begin{aligned} & 7_{7} \text { 年 } \\ & 6 \text { - } \\ & 5- \end{aligned}$
-2		
-1		
0		$\left.\begin{array}{ccccccc} -7 & -6 & -5 & -4 & -3 & -2 & -1 \\ & -1 \\ & -2-1 & & 1 & 2 & 3 & 4 \end{array}\right]$
1		$\begin{aligned} & -3 \\ & -4 \\ & -5 \end{aligned}$
2		-6 -7 -7

What was the effect on the original function $y=x^{2}$?

What was the effect on the original function $y=x^{2}$?

Example：Complete the following tables of values and sketch the graph of each function．
（a）$f(x)=(x+2)^{2}$

What was the effect on the original function $y=x^{2}$ ？
（b）$f(x)=(x-2)^{2}$

x	$f(x)$	$\left\{\begin{array}{l}7 \text { 世早 }^{\mathrm{y}} \\ 6-1\end{array}\right.$
－2		$\begin{aligned} & 4 \text { 万 } \\ & 3 \text { — } \end{aligned}$
－1		
0		$\begin{array}{ccccccccccccccccc} -7 & -6 & -5 & -4 & -3 & -2 & -1 \\ -1 & -2 & & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ & -1 & & & & & & & \end{array}$
1		
2		$\begin{aligned} & -6 \\ & -7 \\ & \hline \end{aligned}$

What was the effect on the original function $y=x^{2}$ ？

Vertical and Horizontal Translations Summary－Suppose f is a function and c is a positive real number．
－$\quad f(x)+c$ shifts the graph of $y=f(x)$ up c units
－$\quad f(x)-c$ shifts the graph of $y=f(x)$ down c units
－$\quad f(x+c)$ shifts the graph of $y=f(x)$ to the left c units
－$\quad f(x-c)$ shifts the graph of $y=f(x)$ to the right c units

Try the next couple problems on your own，without making a table of values．

1. Consider the function $y=\sqrt{x}$. Use the ideas of horizontal and vertical translation to sketch each

(c) $f(x)=\sqrt{x-1}$

2. Consider the function $y=|x|$. Use the ideas of horizontal and vertical translation to sketch each function - do these without making a table of values, rather, shift the original function appropriately.

(a) $f(x)=|x+4|$

(b) $f(x)=|x|-5$

(d) $f(x)=|x-2|$

(c) $f(x)=|x|+1$

Now that you understand vertical and horizontal translations, let's take a look at another graphing transformation, called a reflection.

Example: Complete the following tables of values and sketch the graph of each function.
(a) $f(x)=-\sqrt{x}$

(b) $f(x)=\sqrt{-x}$

What was the effect on the original function $y=\sqrt{x}$?

Reflection Summary - Suppose f is a function.

- $\quad-f(x)$ reflects the graph of $y=f(x)$ about the x-axis
- $\quad f(-x)$ reflects the graph of $y=f(x)$ about the y-axis

Try the next couple problems on your own, without making a table of values.
3. The graph of the function $y=x^{3}$ is shown. Use it to sketch $f(x)=-x^{3}$ on the same set of axes.

4. The graph of the function $y=2^{x}$ is shown. Use it to sketch $f(x)=2^{-x}$ on the same set of axes.

The remaining problems combine all of the ideas illustrated above. One important thing to note - do any reflection first, and then apply a shift. Check your results on your graphing calculator.
5. Sketch each of the following - write down what each function does to the basic function to which it is related. When combining translations and reflections, always do the reflections first, then shift.

(b) $f(x)=-\sqrt{x+3}-4$

(c) $f(x)=-(x+2)$

