Title: Graphing Functions – Translations and Reflections
Class: Math 107 or Math 111
Author: Jason Miner
Instructions to tutor: Read instructions and follow all steps for each problem exactly as given.
Keywords/Tags: Graph, translation, reflection, shift

Graphing Functions – Translations and Reflections

Purpose:

This is intended to refresh your knowledge about graphing functions, including translations and reflections of graphs.

First we will take a look at the function $y = x^2$ and various horizontal and vertical shifts or translations.

Example: Complete the following tables of values and sketch the graph of each function. The graph of $y = x^2$ is shown for reference.

(a) $f(x) = x^2 + 2$

What was the effect on the original function $y = x^2$?

(b) $f(x) = x^2 - 2$

What was the effect on the original function $y = x^2$?

(a) $f(x) =$	$(x+2)^2$	
x	f(x)	7 + y 6 +
-2		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
-1		
0		
1		
2		-6 + -7 + 8 -

Example: Complete the following tables of values and sketch the graph of each function.

What was the effect on the original function $y = x^2$?

What was the effect on the original function $y = x^2$?

Vertical and Horizontal Translations Summary – Suppose f is a function and c is a positive real number.

- f(x) + c shifts the graph of y = f(x) up c units
- f(x) c shifts the graph of y = f(x) down c units
- f(x+c) shifts the graph of y = f(x) to the left c units
- f(x-c) shifts the graph of y = f(x) to the right c units

Try the next couple problems on your own, without making a table of values.

1. Consider the function $y = \sqrt{x}$. Use the ideas of horizontal and vertical translation to sketch each

Тy

function – do these without making a table of values, rather, shift the original function appropriately.

2. Consider the function y = |x|. Use the ideas of horizontal and vertical translation to sketch each function – do these without making a table of values, rather, shift the original function appropriately.

Now that you understand vertical and horizontal translations, let's take a look at another graphing transformation, called a *reflection*.

Example: Complete the following tables of values and sketch the graph of each function.

What was the effect on the original function $y = \sqrt{x}$?

Reflection Summary – Suppose f is a function.

- -f(x) reflects the graph of y = f(x) about the x-axis
- f(-x) reflects the graph of y = f(x) about the y-axis

Try the next couple problems on your own, without making a table of values.

3. The graph of the function $y = x^3$ is shown. Use it to sketch $f(x) = -x^3$ on the same set of axes.

4. The graph of the function $y = 2^x$ is shown. Use it to sketch $f(x) = 2^{-x}$ on the same set of axes.

The remaining problems combine all of the ideas illustrated above. One important thing to note – do any reflection first, and then apply a shift. Check your results on your graphing calculator.

5. Sketch each of the following – write down what each function does to the basic function to which it is related. When combining translations and reflections, always do the reflections first, then shift.

