Title: Systems of Linear Equations - Elimination (Addition) Method (Part 1)
Class: Math 100 or Math 107
Author: Jason Miner
Instructions to tutor: Read instructions and follow all steps for each problem exactly as given.
Keywords/Tags: systems, systems of linear equations, elimination, addition, consistent

Systems of Linear Equations - Elimination (Addition) Method

Purpose:

This is intended to refresh your knowledge about solving systems of linear equations using the elimination (addition) method, where there is a single solution.

Recall that a system of equations consists of two or more equations each with two or more variables. A solution to a system in two variables is an ordered pair (x, y) that satisfies each equation in the system. For now, we will concentrate on systems of linear equations.

Elimination (Addition) Method - Add a multiple of one equation to the other in order to eliminate one of the variables. After this is done, you will have a single equation with one variable - solve for it. Then back-substitute to find the other.

Example: Solve $\left\{\begin{aligned} x+y & =2 \\ 2 x-3 y & =9\end{aligned}\right.$ using the elimination method.

Note that if we multiply the first equation by -2 and add it to the second, the variable x vanishes:

$$
\begin{array}{r}
-2(x+y=2) \\
2 x-3 y=9 \quad \Rightarrow \quad \begin{array}{r}
-2 x-2 y=
\end{array} \quad-4 \\
+\quad 2 x-3 y=9 \\
-5 y=5
\end{array}
$$

Now that we have eliminated a variable, we may solve for y : $-5 y=5 \Rightarrow y=-1$.

We can substitute this into one of the original equations to find x.

Let's use the first equation: $x+y=2 \Rightarrow x-1=2 \Rightarrow x=3$.

So our solution is the ordered pair $(3,-1)$. (Note that this is where the two lines intersect.)

Example: Now it's your turn. Solve $\left\{\begin{array}{c}3 x-2 y=6 \\ x+4 y=4\end{array}\right.$ using the elimination method.
We have a choice to make here - should we try to eliminate x or y ?
What would you have to multiply the $2^{\text {nd }}$ equation by to eliminate x ? \qquad
What would you have to multiply the $1^{\text {st }}$ equation by to eliminate y ? \qquad

Let's take the $2^{\text {nd }}$ option: $+\begin{array}{r}2(3 x-2 y=6) \\ +\quad x+4 y=4\end{array}$

Did you find that $x=\frac{16}{7}$? If not, go back and check your work.
Now go back to one of the original equations and solve for y.

Did you get $\left(\frac{16}{7}, \frac{3}{7}\right)$ for your solution? Good! Now try the next two on your own.

Example: Solve using the substitution method.
(a) $\left\{\begin{aligned} 4 x-y & =7 \\ -2 x+3 y & =9\end{aligned}\right.$
(b) $\left\{\begin{array}{l}5 x+6 y=4 \\ 2 x-3 y=-3\end{array}\right.$
(The answers are (3,5) for (a) and $\left(-\frac{2}{9}, \frac{23}{27}\right)$ for (b). If you did not get these, consult a tutor for help.)

