Calculus Review: Math 150

Things you should know for Math 160

	Differentiation	Integration
Constant	$\frac{d}{d x} c \cdot f(x)=c \cdot f^{\prime}(x)$	$\int c \cdot f(x) d x=c \int f(x) d x$
Addition	$\frac{d}{d x}(f(x)+g(x))=f^{\prime}(x)+g^{\prime}(x)$	$\int(f(x)+g(x)) d x=\int f(x) d x+\int g(x) d x$
Chain Rule/ Substitution	$\frac{d}{d x} f(g(x))=f^{\prime}(g(x)) \cdot g^{\prime}(x)$	$a=g(x)$
Product Rule/Parts	$\frac{d}{d x}(f(x) \cdot g(x))=f^{\prime}(x) \cdot g(x)+f(x) \cdot g^{\prime}(x)$	$\int f(g(x)) \cdot g^{\prime}(x) d x=\int f(a) d a$
Quotient Rule	$\frac{d}{d x}\left(\frac{f(x)}{g(x)}\right)=\frac{f^{\prime}(x) \cdot g(x)-f(x) \cdot g^{\prime}(x)}{(g(x))^{2}}$	No separate integration technique, combine parts and substitution.

	Derivative	Integral
$f(x)=a$ constant	$\frac{d}{d x}(a)=0$	$\int a d x=a \cdot x+c$
$f(x)=x^{a}$ power rule	$\frac{d}{d x}\left(x^{a}\right)=a x^{a-1}$	$\int x^{a} d x=\frac{x^{a+1}}{a+1}+c$
$a \neq-1$		
$f(x)=\ln (x)$ natural logarithm	$\frac{d}{d x}(\ln (x))=\frac{1}{x}$	$\int \frac{1}{x} d x=\ln (x)+c$
$f(x)=e^{x}$ exponential	$\frac{d}{d x}\left(e^{x}\right)=e^{x}$	$\int e^{x} d x=e^{x}+c$
$f(x)=\sin (x)$ trigonometric	$\frac{d}{d x}(\sin (x))=\cos (x)$	$\int \sin (x) d x=-\cos (x)+c$
$f(x)=\cos (x)$ trigonometric	$\frac{d}{d x}(\cos (x))=-\sin (x)$	$\int \cos (x) d x=\sin (x)+c$

Suggested Review: Definition of the derivative, Definition of the definite integral, Fundamental Theorem of Calculus, Trigonometric Identities, Polar Coordinates

Notes:

